# MEGHA-TROPIQUES PRODUCT DEFINITION DOCUMENT

**Top Of the Atmosphere Fluxes & Albedo** 

**Level 2 products** 

derived from ScaRaB

Version 1

Release 1

N° PDD\_SCA\_L2-FLUX\_V1\_R1.doc

|         | O. Chomette (CNRS/LMD)<br>S. Cloché (CNRS/IPSL) |
|---------|-------------------------------------------------|
| Autnors | P. Raberanto (CNRS/LMD)<br>B. Boca (CNRS/LEGOS) |
|         | $\mathbf{R}$                                    |

# **Table of Contents**

| 1. Releases                              | 3  |
|------------------------------------------|----|
| 2. Product content                       | 4  |
| 3. Format of the product ScaRaB-L2-FLUX  | 5  |
| 3.1 File Attributes                      | 6  |
| 3.2 File Attributes Notes                | 7  |
| 3.3 Geolocation Fields                   | 9  |
| 3.4 Geolocation Fields Notes             | 10 |
| 3.5 Data Fields                          | 11 |
| 3.6 Data Fields Notes                    | 14 |
| 4. Format of the product ScaRaB-L2B-FLUX | 18 |
| 4.1 Global Attributes                    | 19 |
| 4.2 Variables                            | 20 |
| 4.3 Variables Notes                      | 21 |
| References                               | 22 |

## 1. Releases

| Release n° | Publication date | Authors                                                                                            | Brief description of change                                                                                                                  |
|------------|------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| RO         | October 2013     | O. Chomette (CNRS/LMD)<br>S. Cloché (CNRS/IPSL)<br>P. Raberanto (CNRS/LMD)<br>R. Roca (CNRS/LEGOS) | 1 <sup>st</sup> draft                                                                                                                        |
| R1         | December 2014    | P. Raberanto (CNRS/LMD)                                                                            | <ul> <li>new variable in L2B :</li> <li>Viewing zenith angle at the pixel center (VZA )</li> <li>an extra dimension (time) in L2B</li> </ul> |

# 2. Product content

This document specifies the format of Megha-Tropiques level 2 (L2) products derived from ScaRaB (Scanner for Radiation Budget). These L2 products are instantaneous products, on a pixel by pixel basis, over all surfaces.

These products contain one orbit (or dump) of estimated Top Of the Atmosphere (TOA) SW and LW fluxes, albedo, unfiltered radiances obtained using a unfiltering processing, scene identifications and some input data (radiances, angles...) for each pixel. In these products, we have two different TOA fluxes: one derived from SEL (ScaRaB Erbe-Like) algorithm, based on the ERBE ADMs (Suttles et al. 1988, 1989) and corresponding inversion methods (Wielicki and Green 1989) and one derived from SANN (ScaRaB Artificial Neural Network) algorithm. You can find a description of this approach on Viollier et al. (2009).

These products are derived from the level1A2 (L1A2) ScaRaB data. Three different level 1 products are proposed for this instrument: 1A, 1A2, 1A3. The L1A provide a "raw" set of calibrated and navigated filtered radiances. The L1A2 ScaRaB product is obtained after geographical correction of L1A data, while the L1A3 consists in a re-mapping of all the channels to the position of the MADRAS 89 GHz pixel centers.

More details on L1 definition and content can be found in «<u>MEGHA-TROPIQUES, Level 1 Products</u> <u>definition</u>».



The Figure 1 below provides a representation of the pixel deformation along the scan line.

Figure 1: pixel representation on the ground for ScaRaB.

The diamond-shaped pixels overlap across track and along track at nadir, and due to the instrument field of view, the pixels sizes increase and so the overlapping between pixels. The footprint diagonal size varies from 58.82 x 58.82 km<sup>2</sup> at nadir towards a 99.4 x 192.5 km<sup>2</sup> (across x along track) on the edge of the swath. The L2 ScaRaB product is provided at the resolution of the L1A2 product.

The L2 files have the same structure as the input L1A2 files: one file per orbit (or per dump file). All parameters are archived in the same file. Informations on housekeeping data are transferred from the L1A2 files to the L2 files (geolocation, time scan, navigation...).

This document also specifies the format of Megha-Tropiques level 2B (L2B) products derived from ScaRaB level 2. This product is, as the L2 product, an instantaneous product but on a 1°x1° geographical grid.

To compute the L2B, the ScaRaB pixels are projected onto this grid with the PSF-Weighted method described in Gif et al. (2011).

#### 3. Format of the product ScaRaB-L2-FLUX

Currently, the Level 2 products are in the HDF4.2r4 format.

The file naming convention for the L2 Megha-Tropiques products is the following:

```
MT1_L2-FLUX-<L1PRODUCT>_< YYYY-MM-DDThh-mm-ss >_V< X-XX >.hdf
```

With :

- <L1PRODUCT> = SCAXL1NN-X.XX : FLUX level 2 products are derived from ScaRaB L1 measurements specified by this item with :
  - X : O/S: Indicates the L1 data is standard (O for Orbit --wise) or NRT(S for Segment-wise) product type.
  - L1NN : Indicates the product type of level 1 used to derive the L2 product: L1A or L1A2.
  - **X.XX** : Indicates the version of L1 used to derive the L2 product
- « < YYYY-MM-DDThh-mm-ss > » = Date and time of the first record (Year, Month, Day, hour, minute, second).
- « V< X-XX > » = L2 Product version.
- «.hdf » = HDF file suffix.

The Level-2 products structure is as follow and described in detail hereafter:

| FILE_ATTRIBUTES   | File metadata                      |
|-------------------|------------------------------------|
| GELOCATION_FIELDS | Time, latitudes, longitudes        |
|                   | Data for each pixel of a scan      |
| DATA_FIELDS       | such as angles, radiances, fluxes, |
|                   | QF, scene identification           |

#### **3.1 File Attributes**

| FILE_ATTRIBUTES            |                         |            |  |  |  |  |
|----------------------------|-------------------------|------------|--|--|--|--|
| Parameter                  | Data Type               | Arroy Sizo |  |  |  |  |
| & Note                     | Data Type               | Allay Size |  |  |  |  |
| File_Name                  | 8-bit character         | 47         |  |  |  |  |
| Icare_ID                   | 8-bit character         | 3          |  |  |  |  |
| Mission                    | 8-bit character         | 15         |  |  |  |  |
| Product_Name               | 8-bit character         | 14         |  |  |  |  |
| Product_Description        | 8-bit character         | 503        |  |  |  |  |
| HDF_Version                | 8-bit character         | 43         |  |  |  |  |
| Beginning_Acquisition_Date | 8-bit character         | 19         |  |  |  |  |
| End_Acquisition_Date       | 8-bit character         | 19         |  |  |  |  |
| Nadir_Pixel_Size           | 8-bit character         | 27         |  |  |  |  |
| Software_Version           | 8-bit character         | 5          |  |  |  |  |
| Product_Version            | 8-bit character         | 5          |  |  |  |  |
| Production_Center          | 8-bit character         | 5          |  |  |  |  |
| Production_Date            | 8-bit character         | 19         |  |  |  |  |
| North_Bounding_Latitude    | 32-bit floating-point   | 1          |  |  |  |  |
| South_Bounding_Latitude    | 32-bit floating-point   | 1          |  |  |  |  |
| West_Bounding_Longitude    | 32-bit floating-point   | 1          |  |  |  |  |
| East_Bounding_Longitude    | 32-bit floating-point   | 1          |  |  |  |  |
| Sensors                    | 8-bit character         | 9          |  |  |  |  |
| Input_Files                | 8-bit character         | 99         |  |  |  |  |
| Ancillary_Files            | 8-bit character         | 50         |  |  |  |  |
| list_of_ECMWF_file         | 8-bit character         | 219        |  |  |  |  |
| Scan_Number                | 16-bit unsigned integer | 1          |  |  |  |  |
| Sample_Number              | 16-bit unsigned integer | 1          |  |  |  |  |
| nb_invalid_scan            | 16-bit unsigned integer | 1          |  |  |  |  |
| Orbit_Start_Number         | 8-bit character         | 5          |  |  |  |  |
| Orbit_End_Number           | 8-bit character         | 5          |  |  |  |  |
| Orbit_Revolution_Number    | 8-bit character         | 2          |  |  |  |  |
| Nskip                      | 8-bit character         | 4          |  |  |  |  |
| Skip_Start_Scan_Number     | 8-bit character         | 4          |  |  |  |  |
| Skip_End_Scan_Number       | 8-bit character         | 4          |  |  |  |  |
| SLConf                     | 8-bit character         | 6          |  |  |  |  |
| Flip_Start_Scan_Number     | 8-bit character         | 4          |  |  |  |  |
| Flip_End_Scan_Number       | 8-bit character         | 4          |  |  |  |  |
| Man_Start_Scan_Number      | 8-bit character         | 4          |  |  |  |  |
| Man_End_Scan_Number        | 8-bit character         | 4          |  |  |  |  |
| Rad_Cal_File_Version       | 8-bit character         | 4          |  |  |  |  |
| Geom_Cal_File_Version      | 8-bit character         | 4          |  |  |  |  |
| QF_Product                 | 8-bit character         | 6          |  |  |  |  |
| Proc_Param_File_Version    | 8-bit character         | 98         |  |  |  |  |
| A_coefficient              | 8-bit character         | 8          |  |  |  |  |
| Level1_Version             | 8-bit character         | 98         |  |  |  |  |

Table 1 : SCARAB-L2-FLUX file attributes

#### **3.2 File Attributes Notes**

| FILE_ATTRIBUTES Notes                                                           |                                                                                                                 |  |  |  |  |
|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--|--|--|--|
| File_Name                                                                       | Name of the file.                                                                                               |  |  |  |  |
| Icare_ID                                                                        | ICARE internal identifier.                                                                                      |  |  |  |  |
| Mission                                                                         | Megha-Tropiques                                                                                                 |  |  |  |  |
| Product_Name                                                                    | SCARAB-L2-FLUX                                                                                                  |  |  |  |  |
| Product_Description                                                             | Resumes the principle of the inversion algorithm.                                                               |  |  |  |  |
| HDF_Version                                                                     | HDF Version 4.2 Release 3, January 27, 2008.                                                                    |  |  |  |  |
| Beginning Acquisition Date                                                      | Date of the first pixel in the file.                                                                            |  |  |  |  |
|                                                                                 | Ex : 2012-12-30T05:17:00                                                                                        |  |  |  |  |
| End Acquisition Date                                                            | Date of the last pixel in the file.                                                                             |  |  |  |  |
|                                                                                 | Ex : 2012-12-30T07:10:24                                                                                        |  |  |  |  |
| Nadir_Pixel_Size                                                                | 40km                                                                                                            |  |  |  |  |
| Software_Version                                                                | Version of the complete framework algorithm.                                                                    |  |  |  |  |
| Product_Version                                                                 | Ex : V0-01                                                                                                      |  |  |  |  |
| Production_Center                                                               | Ex : ICARE                                                                                                      |  |  |  |  |
| Production_Date                                                                 | Ex : 2013/07/27 21:21:49                                                                                        |  |  |  |  |
| North_Bounding_Latitude                                                         | Ex : 29.92                                                                                                      |  |  |  |  |
| South_Bounding_Latitude                                                         | Ex : -29.62                                                                                                     |  |  |  |  |
| West_Bounding_Longitude                                                         | Ex:0.01                                                                                                         |  |  |  |  |
| East_Bounding_Longitude                                                         | Ex : 360.0                                                                                                      |  |  |  |  |
| Sensors                                                                         | MT/SCARAB                                                                                                       |  |  |  |  |
| Input_Files                                                                     | Name of the L1A2 input file.                                                                                    |  |  |  |  |
| Ancillary_Files                                                                 | Name of the ancillary files used as input in the level-2 process.                                               |  |  |  |  |
| list_of_ECMWF_file                                                              | Name of the ECMWF files used in the L2 algorithm (referred as SANN-2 hereafter).                                |  |  |  |  |
| Scan_Number         Number of scan processed in the file. [1020 for Orbit-wise] |                                                                                                                 |  |  |  |  |
| Sample_Number                                                                   | Number of pixel in the swath. [51]                                                                              |  |  |  |  |
| nb_invalid_scan                                                                 | Number of invalid scan in the file.                                                                             |  |  |  |  |
| Orbit_Start_Number                                                              | Orbit reference number, for first scan of the file.                                                             |  |  |  |  |
| Orbit_End_Number                                                                | Orbit reference number of the last scan of the file. Start and End number are identical for orbit wise product. |  |  |  |  |
| Orbit_Revolution_Number                                                         | Orbit revolution number in the 7 days phases orbit – limit range is 1 to 97.                                    |  |  |  |  |
| Nskip                                                                           | Number of missing data skip.                                                                                    |  |  |  |  |
| Skip_Start_Scan_Number                                                          |                                                                                                                 |  |  |  |  |
| Skip_End_Scan_Number                                                            |                                                                                                                 |  |  |  |  |
|                                                                                 | Bit n°0 = SL, configuration of the first scan backward=0, forward=1                                             |  |  |  |  |
| SIConf                                                                          | Bit n°1 = Instrument mode change during the orbit or segment wide file                                          |  |  |  |  |
|                                                                                 | Bit n°2 = Satellite mode change during the orbit or segment wise product                                        |  |  |  |  |
|                                                                                 | Bit n°3, 4 and 5 = Satellite mode of first scan                                                                 |  |  |  |  |

Table 2 : SCARAB-L2-FLUX file attributes notes (continued)

| FILE_ATTRIBUTES Notes   |                                                                                                                                                                                                         |  |  |  |  |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Flip_Start_Scan_Number  | Scan number at flip start.                                                                                                                                                                              |  |  |  |  |
| Flip_End_Scan_Number    | Scan number at flip end.                                                                                                                                                                                |  |  |  |  |
| Man_Start_Scan_Number   | Scan number at manoeuver start.                                                                                                                                                                         |  |  |  |  |
| Man_End_Scan_Number     | Scan number at maneuver end.                                                                                                                                                                            |  |  |  |  |
| Rad_Cal_File_Version    | Radiometric calibration file version.                                                                                                                                                                   |  |  |  |  |
| Geom_Cal_File_Version   | Geometric calibration file version.                                                                                                                                                                     |  |  |  |  |
| QF_Product              | #bit 0 to bit 7 : percentage of valid scans.                                                                                                                                                            |  |  |  |  |
| Proc_Param_File_Version | Processing parameter file version.                                                                                                                                                                      |  |  |  |  |
| A coefficient           | This coefficient is used for the subtraction of the SW unfiltered radiance from the Total unfiltered radiance. SW unfiltered radiance is weighted by coefficient A'.                                    |  |  |  |  |
|                         | A' is related to the equilibrium of both channel responses in the SW domain.<br>Although A' is assumed to be a constant, it might vary slowly in time, reason<br>why its value is given in each record. |  |  |  |  |
| Level1_Version          |                                                                                                                                                                                                         |  |  |  |  |

Table 2 : SCARAB-L2-FLUX file attributes notes

#### **3.3 Geolocation Fields**

| GEOLOCATION_FIELDS                 |                               |                           |                                            |            |                   |                         |  |  |
|------------------------------------|-------------------------------|---------------------------|--------------------------------------------|------------|-------------------|-------------------------|--|--|
| Parameter<br>& Note                | Data<br>Type                  | Units                     | Range                                      | Fill Value | Missing<br>Output | Size                    |  |  |
| UTC_Date_Scan                      | 8_bit<br>character            | UTC Time<br>in<br>seconds | NA                                         | NA         | NA                | ['nscan']               |  |  |
| Scan_StartTime                     | 64-bit<br>floating-<br>point  | UTC Time<br>in<br>seconds | NA                                         | 99999.0    | 999999.0          | ['nscan']               |  |  |
| POSIX_Date_Scan                    | 64-bit<br>floating-<br>point  | UTC Time<br>in<br>seconds | NA                                         | 99999.0    | 999999.0          | ['nscan']               |  |  |
| Colatitude_Nadir                   | 16-bit<br>unsigned<br>integer | Degrees                   | 6000,<br>12000<br>(scale factor<br>= 0.01) | 65535      | 65534             | ['nscan']               |  |  |
| Longitude_Nadir                    | 16-bit<br>unsigned<br>integer | Degrees                   | 0, 36000<br>(scale factor<br>= 0.01)       | 65535      | 65534             | ['nscan']               |  |  |
| Colatitude_for_radiance_at_surface | 16-bit<br>unsigned<br>integer | Degrees                   | 6000,<br>12000<br>(scale factor<br>= 0.01) | 65535      | 65534             | ['nscan'] x<br>['npix'] |  |  |
| Longitude_for_radiance_at_surface  | 16-bit<br>unsigned<br>integer | Degrees                   | 0, 36000<br>(scale factor<br>= 0.01)       | 65535      | 65534             | ['nscan'] x<br>['npix'] |  |  |
| Colatitude_for_radiance_at_TOA     | 16-bit<br>unsigned<br>integer | Degrees                   | 6000,<br>12000<br>(scale factor<br>= 0.01) | 65535      | 65534             | ['nscan'] x<br>['npix'] |  |  |
| Longitude_for_radiance_at_TOA      | 16-bit<br>unsigned<br>integer | Degrees                   | 0, 36000<br>(scale factor<br>= 0.01)       | 65535      | 65534             | ['nscan'] x<br>['npix'] |  |  |

Table 3 : SCARAB-L2-FLUX GEOLOCATION FIELDS variables

#### **3.4 Geolocation Fields Notes**

|                                    | GEOLOCATION FIELDS Notes                                                    |
|------------------------------------|-----------------------------------------------------------------------------|
| UTC_Date_Scan                      | Acquisition time of the first pixel of the scan.                            |
|                                    | format: YYYY-MM-DDThh:mm:ss                                                 |
| Scan StartTime                     | Time tagging of the scan start time. Julian day number plus the fraction of |
|                                    | the day since that instant.                                                 |
| POSIX Date Scan                    | Date of the scan: number of seconds that have elapsed since midnight        |
|                                    | Coordinated Universal Time (UTC), 1 January 1970.                           |
| Colatitude Nadir                   | Colatitude at nadir. The Colatitude is between 0 deg to 180 deg with 0 deg  |
|                                    | is north, 90 deg is equator and 180 deg is south.                           |
| Longitude_Nadir                    | Longitude at nadir. 0 deg is Greewich meridian.                             |
| Colatitude for radiance at surface | Colatitude of samples projected on ground. The Colatitude is between 0      |
|                                    | deg to 180 deg with 0 deg is north, 90 deg is equator and 180 deg is south. |
| Longitude_for_radiance_at_surface  | Longitude of samples projected on ground. 0 deg is Greewich meridian.       |
|                                    | Colatitude of samples projected from top of atmosphere i.e the point        |
| Colatitude for radiance at TOA     | where the sensor s optical axis intercepts the 20 km altitude earth         |
|                                    | envelop. The Colatitude is between 0 deg to 180 with 0 deg is north, 90     |
|                                    | deg is equator and 180 deg is south.                                        |
|                                    | Longitude of samples projected from top of atmosphere i.e the point         |
| Longitude_for_radiance_at_TOA      | where the sensor s optical axis intercepts the 20 km altitude earth         |
|                                    | envelop. 0 deg is Greewich meridian.                                        |

Table 4 : SCARAB-L2-FLUX GEOLOCATION FIELDS notes

#### 3.5 Data Fields

| DATA_FIELDS                     |                               |         |                                            |               |                   |                         |  |  |
|---------------------------------|-------------------------------|---------|--------------------------------------------|---------------|-------------------|-------------------------|--|--|
| Parameter<br>& Note             | Data<br>Type                  | Units   | Range                                      | Fill<br>Value | Missing<br>Output | Size                    |  |  |
| Scan_Gain                       | 32-bit<br>floating-<br>point  | NA      | NA                                         | 99999.0       | 999999.0          | ['nscan']<br>x ['ncha'] |  |  |
| Scan_Mode_Status                | 16-bit<br>integer             | NA      | NA                                         | 32767         | -32768            | ['nscan']               |  |  |
| Scan_QF                         | 16-bit<br>integer             | NA      | 8196, 24580                                | 32767         | -32768            | ['nscan']               |  |  |
| Scan_Number                     | 16-bit<br>integer             | NA      | 0, 1134                                    | 65535         | 65534             | ['nscan']               |  |  |
| Along_Track_diagonal_dimension  | 16-bit<br>unsigned<br>integer | Meter   | 0, 20000<br>(scale factor =10)             | 65535         | 65534             | ['nscan']<br>x ['npix'] |  |  |
| Across_Track_diagonal_dimension | 16-bit<br>unsigned<br>integer | Meter   | 0, 20000<br>(scale factor =10)             | 65535         | 65534             | ['nscan']<br>x ['npix'] |  |  |
| Pixel_Orientation               | 16-bit<br>unsigned<br>integer | Degrees | <b>0, 36000</b><br>(scale factor<br>=0.01) | 65535         | 65534             | ['nscan']<br>x ['npix'] |  |  |
| Viewing_Zenith_Angle            | 16-bit<br>unsigned<br>integer | Degrees | <b>0, 9000</b><br>(scale factor<br>=0.01)  | 65535         | 65534             | ['nscan']<br>x ['npix'] |  |  |
| Viewing_Azimuth_Angle           | 16-bit<br>unsigned<br>integer | Degrees | <b>0, 36000</b><br>(scale factor<br>=0.01) | 65535         | 65534             | ['nscan']<br>x ['npix'] |  |  |
| Solar_Zenith_Angle              | 16-bit<br>unsigned<br>integer | Degrees | <b>0, 9000</b><br>(scale factor<br>=0.01)  | 65535         | 65534             | ['nscan']<br>x ['npix'] |  |  |
| Relative_Azimuth_Angle          | 16-bit<br>unsigned<br>integer | Degrees | 0, 36000<br>(scale factor<br>=0.01)        | 65535         | 65534             | ['nscan']<br>x ['npix'] |  |  |

Table 5 : SCARAB-L2-FLUX DATA\_FIELDS variables (continued)

| DATA_FIELDS                                    |                               |               |                                            |               |                                       |                         |
|------------------------------------------------|-------------------------------|---------------|--------------------------------------------|---------------|---------------------------------------|-------------------------|
| Parameter<br>& Note                            | Data<br>Type                  | Units         | Range                                      | Fill<br>Value | Missing<br>Output                     | Size                    |
| Filtered_Radiance_for_<br>Visible_Channel      | 16-bit<br>unsigned<br>integer | W m-2<br>sr-1 | 0, 12000<br>(scale factor<br>=0.01)        | 65535         | 65534                                 | ['nscan']<br>x ['npix'] |
| Filtered_Radiance_for_<br>Solar_Channel        | 16-bit<br>unsigned<br>integer | W m-2<br>sr-1 | 0, 42500<br>(scale factor<br>=0.01)        | 65535         | 65534                                 | ['nscan']<br>x ['npix'] |
| Filtered_Radiance_for_<br>Total_Channel        | 16-bit<br>unsigned<br>integer | W m-2<br>sr-1 | <b>0, 50000</b><br>(scale factor<br>=0.01) | 65535         | 65534                                 | ['nscan']<br>x ['npix'] |
| Filtered_Radiance_for_<br>Infrared_Channel     | 16-bit<br>unsigned<br>integer | W m-2<br>sr-1 | 0, 3000<br>(scale factor<br>=0.01)         | 65535         | 65534                                 | ['nscan']<br>x ['npix'] |
| Filtered_Radiance_for_<br>Synthetic_LW_Channel | 16-bit<br>unsigned<br>integer | W m-2<br>sr-1 | 0, 24000<br>(scale factor<br>=0.01)        | 65535         | 65534                                 | ['nscan']<br>x ['npix'] |
| Unfiltered_SW_radiance                         | 16-bit<br>unsigned<br>integer | W m-2<br>sr-1 | 0, 42500<br>(scale factor<br>=0.01)        | 65535         | 65534                                 | ['nscan']<br>x ['npix'] |
| Unfiltered_LW_radiance                         | 16-bit<br>unsigned<br>integer | W m-2<br>sr-1 | 0, 12000<br>(scale factor<br>=0.01)        | 65535         | 65534                                 | ['nscan']<br>x ['npix'] |
| QF_RD_Vis                                      | 16-bit<br>integer             | NA            | -32760,<br>12288                           | 32767         | -32768                                | ['nscan']<br>x ['npix'] |
| QF_RD_SW                                       | 16-bit<br>integer             | NA            | 0, 12288                                   | 32767         | -32768                                | ['nscan']<br>x ['npix'] |
| QF_RD_Total                                    | 16-bit<br>integer             | NA            | -32760,<br>12288                           | 32767         | -32768                                | ['nscan']<br>x ['npix'] |
| QF_RD_IR                                       | 16-bit<br>integer             | NA            | -32760,<br>12288                           | 32767         | -32768                                | ['nscan']<br>x ['npix'] |
| QF_RD_LW_Synthetic                             | 16-bit<br>integer             | NA            | -32760,<br>12288                           | 32767         | -32768                                | ['nscan']<br>x ['npix'] |
| Geotype                                        | 8-bit<br>unsigned<br>integer  | NA            | 0.0, 20.0                                  | 255           | 254                                   | ['nscan']<br>x ['npix'] |
| SEL_TOA_SW_Flux                                | 32-bit<br>floating-<br>point  | W m-2         | 0.0, 1000.0                                | 99999.0       | 9999999.0<br>Failed value<br>=32767.0 | ['nscan']<br>x ['npix'] |
| SEL_TOA_LW_Flux                                | 32-bit<br>floating-<br>point  | W m-2         | 0.0, 500.0                                 | 99999.0       | 9999999.0<br>Failed value<br>=32767.0 | ['nscan']<br>x ['npix'] |
| SEL_Scene_Identification                       | 8-bit<br>unsigned<br>integer  | NA            | 0.0, 12.0                                  | 255           | 254                                   | ['nscan']<br>x ['npix'] |
| SEL_Albedo                                     | 32-bit<br>floating-<br>point  | NA            | 0.0, 1.0                                   | 99999.0       | 9999999.0                             | ['nscan']<br>x ['npix'] |

Table 5 : SCARAB-L2-FLUX DATA\_FIELDS variables (continued)

| DATA_FIELDS                  |                              |       |             |               |                                              |                         |  |
|------------------------------|------------------------------|-------|-------------|---------------|----------------------------------------------|-------------------------|--|
| Parameter<br>& Note          | Data<br>Type                 | Units | Range       | Fill<br>Value | Missing<br>Output                            | Size                    |  |
| SANN_TOA_SW_Flux (1)         | 32-bit<br>floating-<br>point | W m-2 | 0.0, 1000.0 | 99999.0       | <b>999999.0</b><br>Failed value<br>=32767.0  | ['nscan']<br>x ['npix'] |  |
| SANN_TOA_LW_Flux (1)         | 32-bit<br>floating-<br>point | W m-2 | 0.0, 500.0  | 99999.0       | 9999999.0<br>Failed value<br>=32767.0        | ['nscan']<br>x ['npix'] |  |
| SANN_Albedo (1)              | 32-bit<br>floating-<br>point | NA    | 0.0, 1.0    | 99999.0       | 999999.0                                     | ['nscan']<br>x ['npix'] |  |
| SANN_TOA_SW_Flux (2)         | 32-bit<br>floating-<br>point | W m-2 | 0.0, 1000.0 | 99999.0       | <b>9999999.0</b><br>Failed value<br>=32767.0 | ['nscan']<br>x ['npix'] |  |
| SANN_TOA_LW_Flux (2)         | 32-bit<br>floating-<br>point | W m-2 | 0.0, 500.0  | 99999.0       | <b>999999.0</b><br>Failed value<br>=32767.0  | ['nscan']<br>x ['npix'] |  |
| SANN_Albedo (2)              | 32-bit<br>floating-<br>point | NA    | 0.0, 1.0    | 99999.0       | 9999999.0                                    | ['nscan']<br>x ['npix'] |  |
| SANN_SW_Scene_Identification | 8-bit<br>unsigned<br>integer | NA    | 0, 5        | 255           | 254                                          | ['nscan']<br>x ['npix'] |  |
| SANN_LW_Scene_Identification | 8-bit<br>unsigned<br>integer | NA    | 0, 4        | 255           | 254                                          | ['nscan']<br>x ['npix'] |  |
| Quality_Index                | 8-bit<br>unsigned<br>integer | NA    | NA          | 255           | 254                                          | ['nscan']<br>x ['npix'] |  |

Table 5 : SCARAB-L2-FLUX DATA\_FIELDS variables

#### 3.6 Data Fields Notes

| DATA_FIELDS notes                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Scan_Gain                                      | Estimated gain value applied to radiance calculation for each channels in the following sequence: Visible, Solar, Total, Infrared.                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| Scan_Mode_Status                               | ScaRaB mode and status (See § Satellite modes on «Megha Tropiques L1 product definition for more details» document).                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| Scan_QF                                        | Quality flag applicable to the scan line.<br>16-bits array (=0:good/=1:bad):, #15: scan/row quality flag validity, #14:<br>pass type, #13: Scanning type, #12: Scan/Row error, #11: datation error,<br>#10-8: Blank, #7 CRC Status, #6: Blank, #5-3: Payload Mode, #2-0: Satellite<br>Mode                                                                                                                                                                                                                                                    |  |  |  |
| Scan_Number                                    | Scan number from the first scan of the product derived from telemetry.                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| Along_Track_diagonal_dimension                 | Dimension in meters of the along track diagonal of each pixel.<br>Exemple : [99.328, 94.144, 89.699, 85.845, 82.473, 79.503, 76.874, 74.535, 72.450, 70.586, 68.918, 67.425, 66.090, 64.898, 63.837, 62.897, 62.068, 61.344, 60.717, 60.184, 59.740, 59.381, 59.104, 58.908, 58.791, 58.752, 58.791, 58.908, 59.104, 59.381, 59.740, 60.184, 60.717, 61.344, 62.068, 62.897, 63.837, 64.898, 66.090, 67.425, 68.918, 70.586, 72.450, 74.535, 76.874, 79.503, 82.473, 85.845, 89.699, 94.144, 99.328]                                          |  |  |  |
| Across_Track_diagonal_dimension                | <ul> <li>Dimension in meters of the across track diagonal of each pixel.</li> <li>Exemple : [192.152, 168.811, 150.542, 135.896, 123.932, 114.014, 105.690, 98.637, 92.612, 87.433, 82.959, 79.080, 75.708, 72.775, 70.223, 68.008, 66.092, 64.444, 63.039, 61.858, 60.884, 60.104, 59.507, 59.086, 58.835, 58.752, 58.835, 59.086, 59.507, 60.104, 60.884, 61.858, 63.039, 64.444, 66.092, 68.008, 70.223, 72.775, 75.708, 79.080, 82.959, 87.433, 92.612, 98.637, 105.690, 114.014, 123.932, 135.896, 150.542, 168.811, 192.152]</li> </ul> |  |  |  |
| Pixel_Orientation                              | Pixel orientation on earth: angle between north and along track diagonal-<br>Positive convention North to East.                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| Viewing_Zenith_Angle                           | Viewing azimuth angle at pixel center.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| Solar_Zenith_Angle                             | Solar zenith angle at pixel center.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| Relative_Azimuth_Angle                         | Relative azimuth angle at pixel center.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| Filtered_Radiance_for_<br>Visible_Channel      | Raw measurement of channel 1 after count conversion (calibrated radiances).                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| Filtered_Radiance_for_<br>Solar_Channel        | Raw measurement of channel 2 after count conversion (calibrated radiances).                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| Filtered_Radiance_for_<br>Total_Channel        | Raw measurement of channel 3 after count conversion (calibrated radiances).                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| Filtered_Radiance_for_<br>Infrared_Channel     | Raw measurement of channel 4 after count conversion (calibrated radiances).                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| Filtered_Radiance_for_<br>Synthetic LW Channel | Raw measurement for LW synthetic channel after count conversion (calibrated radiances).                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |

Table 6 : SCARAB-L2-FLUX DATA\_FIELDS variables notes (continued)

| DATA FIELDS notes      |                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Unfiltered_SW_radiance | Correction for underestimation at the shortest wavelengths, domain where the instrument response diminishes :<br>The real (unfiltered) radiance L is deduced from the filtered radiance Lf and                                                                                                                                                                                       |  |  |
|                        | from predetermined filtering factors Fscene, where Fscene is estimated from the spectral radiances Lscene( $\lambda$ ) of different scenes and for the spectral response of the SW channel (see Viollier et Raberanto, 2010 for more details).                                                                                                                                       |  |  |
| Unfiltered_LW_radiance | Subtraction of the SW unfiltered radiance from the Total unfiltered radiance. SW unfiltered radiance is weighted by coefficient A (see Viollier et Raberanto, 2010 for more details).                                                                                                                                                                                                |  |  |
| QF_RD_Vis              | Quality flag for samples radiances of channel 1. 16-bits array<br>(=0:good/=1:bad):<br>#15: Radiance validity flag , #14:blank, #13:land/sea contamination,<br>#12:surface type, #11:ChannelON/OFF, #10:Level-0 Count Saturated,<br>#9:Level-0 Count poor value, #8:geolocation estimation, #7:Spacecount<br>error, #6-4:Blank, #3: interpolation quality, #2: Gainflag, #1-0: Blank |  |  |
| QF_RD_SW               | Quality flag for samples radiances of channel 2. 16-bits array (0=good, 1=bad).<br>#15: Radiance validity flag , #14:blank, #13:land/sea contamination, #12:surface type, #11:ChannelON/OFF, #10:Level-0 Count Saturated, #9:Level-0 Count poor value, #8:geolocation estimation, #7:Spacecount error, #6-4:Blank, #3: interpolation quality, #2: Gainflag, #1-0: Blank              |  |  |
| QF_RD_Total            | Quality flag for samples radiances of channel 3. 16-bits array (0=good, 1=bad).<br>#15: Radiance validity flag , #14:blank, #13:land/sea contamination, #12:surface type, #11:ChannelON/OFF, #10:Level-0 Count Saturated, #9:Level-0 Count poor value, #8:geolocation estimation, #7:Spacecount error, #6-4:Blank, #3: interpolation quality, #2: Gainflag, #1-0: Blank              |  |  |
| QF_RD_IR               | Quality flag for samples radiances of channel 4. 16-bits array (0=good, 1=bad).<br>#15: Radiance validity flag , #14:blank, #13:land/sea contamination, #12:surface type, #11:ChannelON/OFF, #10:Level-0 Count Saturated, #9:Level-0 Count poor value, #8:geolocation estimation, #7:Spacecount error, #6-4:Blank, #3: interpolation quality, #2: Gainflag, #1-0: Blank              |  |  |
| QF_RD_LW_Synthetic     | Quality flag for samples radiances of LW synthetic channel. 16-bits array (0=good, 1=bad).<br>#15: Radiance validity flag , #14:blank, #13:land/sea contamination, #12:surface type, #11:ChannelON/OFF, #10:Level-0 Count Saturated, #9:Level-0 Count poor value, #8:geolocation estimation, #7:Spacecount error. #6-4:Blank. #3: interpolation guality. #2: Gainflag. #1-0: Blank   |  |  |

Table 6 : SCARAB-L2-FLUX DATA\_FIELDS variables notes (continued)

| DATA_FIELDS notes          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |           |             |           |           |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------|-------------|-----------|-----------|
| Surface GeoType from IGBP. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |           |             |           |           |
| Geotype                    | <ul> <li>Each ScaRaB pixels (in their specific geometry) have geotype data. These data, derived from the IGBP land cover map, have been projected in the Level 2 processing using the PSF-Weigthed method (See Gif et al. 2011). Only the most represented geotype in each ScaRaB pixel is kept in this variable.</li> <li>IGBP Land Cover Legend :</li> <li>1=Evergreen Needleleaf Forest ; 2=Evergreen Broadleaf Forest ;</li> <li>3=Deciduous Needleleaf Forest ; 4=Deciduous Broadleaf Forest ; 5=Mixed Forest ; 6=Closed Shrublands ; 7=Open Shrublands ; 8=Woody Savannas ;</li> <li>9=Savannas ; 10=Grasslands ; 11=Permanent Wetlands ; 12=Croplands ;</li> <li>13=Urban and Built-Up ; 14=Cropland/Natural Vegetation Mosaic ;</li> </ul> |             |           |             |           |           |
|                            | 15=Snow and ice ; 16=Barren or Sparsely Vegetated ; 17=Water Bodies ; 18=Tundra · 19=Fresh Snow · 20= Sea Ice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |           |             |           |           |
| SEL_TOA_SW_Flux            | The SW unfiltered radiance is converted into flux, using the view and sun angles, the scene identification and the SW Erbe bi-directional function (Suttles et al, 1988). A linear interpolation of BRDF between angles is used in order to remove the discrete nature of the angular model TOA : top of atmosphere (30km altitude as in Erbe).                                                                                                                                                                                                                                                                                                                                                                                                    |             |           |             |           |           |
| SEL_TOA_LW_Flux            | The LW unfiltered radiance is converted into flux, using the view angle and colatitude, the scene identification and the LW Erbe anisotropic function (Suttles et al, 1988). A linear interpolation of the anisotropic function between view angle and colatitude is also used                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |           |             |           |           |
|                            | Scene Id: There are 12 po                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ssible valu | ues for t | he whole pa | rt (1 12) | plus 0 as |
|                            | unknown scene.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |           |             |           |           |
|                            | NGEO/NCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | OCEAN       | LAND      | SNOW-       | DESERT    | COAST     |
|                            | Clear Sky (0-5%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1           | 2         | 3           | 4         | 5         |
| SEL_Scene_Identification   | Partly Cloudy (5-50%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6           | 7         | 0           | 7         | 8         |
|                            | Mostly Cloudy (50-<br>95%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9           | 10        | 0           | 10        | 11        |
|                            | Overcast (95-100%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12          | 12        | 12          | 12        | 12        |
|                            | Scene Index (1 to 12) according to the Cloud Cover Category (NCC) and the geotype (NGEO)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |           |             |           |           |
| SEL_Albedo                 | Albedo using the SEL SW flux.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |           |             |           |           |

#### Table 6 : SCARAB-L2-FLUX DATA\_FIELDS variables notes (continued)

| DATA_FIELDS notes            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| SANN_TOA_SW_Flux (1)         | The SW unfiltered radiance is converted into flux, using the ScaRaB<br>Artificial Neural Network Algorithm (SANN). Method 1.<br>This method uses the ScaRaB auxiliary narrowband channels as inputs:<br>visible (VIS : 0.5–0.7 mm) and infrared window (IR : 10.5–12.5 mm).<br>Because the anisotropy of the radiance field is strongly dependent on the<br>scene content, it is expected that auxiliary (narrowband) measurements<br>are better predictors for the radiance anisotropy.<br>In the SW domain, the input variables are the SZA (Solar Zenith Angle), VZA<br>(Viewing Zenith Angle), RAZ (Relative Azimuth Angle) observation angles,<br>the VIS, IR, SW and LW radiances.<br>For more details, see Viollier et al. (2009). |  |  |
| SANN_TOA_LW_Flux (1)         | The LW unfiltered radiance is converted into flux, using the ScaRaB<br>Artificial Neural Network Algorithm (SANN). Method 1.<br>This method uses the ScaRaB auxiliary narrowband channels as inputs:<br>visible (VIS : 0.5–0.7 mm) and infrared window (IR : 10.5–12.5 mm).<br>In the LW domain, the input variables are VZA, and the IR, SW, and LW<br>radiances.<br>For more details, see Viollier et al. (2009).                                                                                                                                                                                                                                                                                                                       |  |  |
| SANN_Albedo (1)              | Albedo using the SANN SW flux. Method 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| SANN_TOA_SW_Flux (2)         | The SW unfiltered radiance is converted into flux, using the ScaRaB<br>Artificial Neural Network Algorithm (SANN). Method 2.<br>This method uses the ScaRaB broadband channels as inputs.<br>In the SW domain, the input variables are the SZA (Solar Zenith Angle), VZA<br>(Viewing Zenith Angle), and RAZ (Relative Azimuth Angle) observation<br>angles and the SW and LW radiances.<br>For more details, see Viollier et al. (2009).                                                                                                                                                                                                                                                                                                  |  |  |
| SANN_TOA_LW_Flux (2)         | The LW unfiltered radiance is converted into flux, using the ScaRaB<br>Artificial Neural Network Algorithm (SANN). Method 2.<br>This method uses the ScaRaB broadband channels as inputs.<br>In the LW domain, the input variables are the VZA (Viewing Zenith Angle),<br>PW (Precipitable Water from ECMWF), and the SW and LW unfiltered<br>radiances.<br>For more details, see Viollier et al. (2009).                                                                                                                                                                                                                                                                                                                                 |  |  |
| SANN_Albedo (2)              | Albedo using the SANN SW flux. Method 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| SANN_SW_Scene_Identification | SANNN SW Scene type<br>[0 to 5] : ocean glint, ocean no glint, land LMTS (low to medium amount of<br>tree/shrubs), land MHTS (medium to high amount of tree/shrubs), bright<br>desert, dark desert.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| SANN_LW_Scene_Identification | SANN LW Scene type<br>[0 to 4]Surface type are night time scenes (all types), ocean no glint, ocean<br>glint, land & desert.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| Quality_Index                | ТВО                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |

<u>Table 6</u> : SCARAB-L2-FLUX DATA\_FIELDS variables notes

## 4. Format of the product ScaRaB-L2B-FLUX

Currently, the Level 2B products are in the NetCDF-3 format.

The file naming convention for the L2B Megha-Tropiques products is the following:

MT1\_L2B-FLUX-<L1PRODUCT>\_< YYYY-MM-DDThh-mm-ss >\_V< X-XX >.nc

With :

- <L1PRODUCT> = SCAXL1NN-X.XX : FLUX level 2 products are derived from ScaRaB L1 measurements specified by this item with :
  - X : O/S: Indicates the L1 data is standard (O for Orbit --wise) or NRT(S for Segment-wise) product type.
  - L1NN : Indicates the product type of level 1 used to derive the L2 product: L1A or L1A2.
  - X.XX : Indicates the version of L1 used to derive the L2 product
- « < YYYY-MM-DDThh-mm-ss > » = Date and time of the first record (Year, Month, Day, hour, minute, second).
- « V< X-XX > » = L2B Product version.
- «.nc » = NetCDF file suffix.

The Level-2 products structure is as follow and described in detail hereafter:

| GLOBAL_ATTRIBUTES | File metadata     |
|-------------------|-------------------|
| VARIABLES         | All the variables |

#### 4.1 Global Attributes

| GLOBAL Attributes Notes    |                                                                                                                                                                                                   |  |  |
|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| File_Name                  | Name of the file.                                                                                                                                                                                 |  |  |
| Product_Description        | Level-2B 1deg grid-wise: The product contains one orbit of estimated top<br>of the atmosphere (TOA) SW and LW fluxes as well as scene identifications<br>and some input data (radiances, angles). |  |  |
| North_Bounding_Latitude    | 30                                                                                                                                                                                                |  |  |
| South_Bounding_Latitude    | -30                                                                                                                                                                                               |  |  |
| West_Bounding_Longitude    | 0                                                                                                                                                                                                 |  |  |
| East_Bounding_Longitude    | 360                                                                                                                                                                                               |  |  |
| Nadir_Pixel_Size           | 1.0 deg                                                                                                                                                                                           |  |  |
| Software_Version           | 3.1.1                                                                                                                                                                                             |  |  |
| Product_Version            | V0-01                                                                                                                                                                                             |  |  |
| Production_Center          | ICARE                                                                                                                                                                                             |  |  |
| Production_Date            | 2013/07/27 20:55:56                                                                                                                                                                               |  |  |
| Sensors                    | MT/SCARAB                                                                                                                                                                                         |  |  |
| Mission                    | Megha-Tropiques                                                                                                                                                                                   |  |  |
| Input_Files                | Name of the L1 input file(s).                                                                                                                                                                     |  |  |
| Ancillary_Files            | Name of the ancillary file(s) used in L2 processing.                                                                                                                                              |  |  |
| list_of_ECMWF_file         | Name of the ECMWF file(s) used in L2 processing.                                                                                                                                                  |  |  |
| NETCDF_Version             | 3                                                                                                                                                                                                 |  |  |
| Orbit_Start_Number         |                                                                                                                                                                                                   |  |  |
| Orbit_End_Number           |                                                                                                                                                                                                   |  |  |
| Orbit_Revolution_Number    |                                                                                                                                                                                                   |  |  |
| Nskip                      |                                                                                                                                                                                                   |  |  |
| Skip_Start_Scan_Number     |                                                                                                                                                                                                   |  |  |
| Skip_End_Scan_Number       |                                                                                                                                                                                                   |  |  |
| SLConf                     |                                                                                                                                                                                                   |  |  |
| Flip_Start_Scan_Number     |                                                                                                                                                                                                   |  |  |
| Flip_End_Scan_Number       |                                                                                                                                                                                                   |  |  |
| Man_Start_Scan_Number      |                                                                                                                                                                                                   |  |  |
| Man_End_Scan_Number        |                                                                                                                                                                                                   |  |  |
| Rad_Cal_File_Version       |                                                                                                                                                                                                   |  |  |
| Geom_Cal_File_Version      |                                                                                                                                                                                                   |  |  |
| QF_Product                 |                                                                                                                                                                                                   |  |  |
| Proc_Param_File_Version    |                                                                                                                                                                                                   |  |  |
| A_coefficient              | Value of the A coefficient used in the L2 processing (to compute the LW unfiltered radiances with the SW & Total unfiltered radiances).                                                           |  |  |
| Level1_Version             |                                                                                                                                                                                                   |  |  |
| Beginning_Acquisition_Date | 2012-12-29T18:15:42                                                                                                                                                                               |  |  |
| End_Acquisition_Date       | 2012-12-29T19:31:42                                                                                                                                                                               |  |  |
| Product_Name               | L2-FLUX-SCASL1A2-1.05                                                                                                                                                                             |  |  |
| Icare_ID                   |                                                                                                                                                                                                   |  |  |

Table 7 : SCARAB-L2B-FLUX Global Attributes notes

#### **4.2 Variables**

| VARIABLES                                    |              |               |                  |            |                   |                 |
|----------------------------------------------|--------------|---------------|------------------|------------|-------------------|-----------------|
| Parameter<br>& Note                          | Data<br>Type | Units         | Range            | Fill Value | Missing<br>Output | Size            |
| Time                                         | Double       | S             | NA               | NA         | NA                | [1]             |
| Latitude                                     | Float        | Degrees_north | -29.5,<br>29.5   | 99999.f    | 999999.f          | [60]            |
| Longitude                                    | Float        | Degrees_east  | 0.5, 359.5       | 99999.f    | 999999.f          | [360]           |
| Pixel_time                                   | Double       | S             | NA               | 99999.f    | 999999.f          | [1,60,360]*     |
| Albedo                                       | Float        | NA            | 0,1              | 99999.f    | 999999.f          | [1,160,360] *   |
| TOA_SW_Flux                                  | Float        | W m-2         | 0., 1400.        | 99999.f    | 999999.f          | [1,60,360]*     |
| TOA_LW_Flux                                  | Float        | W m-2         | 0. <i>,</i> 500. | 99999.f    | 999999.f          | [1,60,360]*     |
| Quality Index                                | Int          | NA            | TBD              | 2147483647 | -2147483648       | [1,60,360]*     |
| Box_percent_coverage                         | Float        | %             | TBD              | 99999.f    | 999999.f          | [1,60,360]*     |
| Solar_Zenith_Angle                           | Float        | Degrees       | 0., 180.         | 99999.f    | 999999.f          | [1,60,360] *    |
| Viewing_Zenith_Angle                         | Float        | Degrees       | 0., 70.          | 99999.f    | 999999.f          | [1,60,360] *    |
| Geotype                                      | Byte         | NA            | 1, 20            | 127b       | -128b             | [1,6,60,360] ** |
| Geotype_percent_coverage                     | Float        | %             | 0., 100.         | 99999.f    | 999999.f          | [1,6,60,360] ** |
| SW_Scene_Identification                      | Byte         | NA            | 0,5              | 127b       | -128b             | [1,6,60,360] ** |
| SW_Scene_Identification_<br>percent_coverage | Float        | %             | 0., 100.         | 99999.f    | 999999.f          | [1,6,60,360] ** |
| LW_Scene_Identification                      | Byte         | NA            | 0,4              | 127b       | -128b             | [1,6,60,360] ** |
| LW_Scene_Identification_<br>percent_coverage | Float        | %             | 0., 100.         | 99999.f    | 9999999.f         | [1,6,60,360] ** |

\*: first dimension : time dimension added = [1] \*\*:  $2^{nd}$  dimension : the 6 most represented values in the 1° x 1° grid = [6]

Table 8 : SCARAB-L2B-FLUX Variables

#### **4.3 Variables Notes**

| GLOBAL Attributes Notes                  |                                                                     |  |  |  |
|------------------------------------------|---------------------------------------------------------------------|--|--|--|
| Time                                     | Unlimited dimension. The time value is the first scan time          |  |  |  |
|                                          | expressed in "seconds since 2011-10-12 00:00:00.00".                |  |  |  |
| Latitude                                 | Latitude of the grid center. A positive value means North.          |  |  |  |
| Longitude                                | Longitude of the grid center.                                       |  |  |  |
|                                          | The pixel time is computed by averaging the time of all the         |  |  |  |
| Pixel time                               | instantaneous pixel included in the grid. The pixel time format is  |  |  |  |
| -                                        | the same as the level 2 product but "seconds since 2011-10-12       |  |  |  |
|                                          | 00:00:00.000".                                                      |  |  |  |
| Albada                                   | derived from SW/ Eluxes computed using SANN Method 1 (ScaPaP        |  |  |  |
| Albedo                                   | Artificial Neural Network Algorithm) algorithm                      |  |  |  |
|                                          | Averaged SW Fluxes from instantaneous ScaRaB nivels Fluxes          |  |  |  |
| TOA SW Flux                              | were computed using SANN-Method-1 (ScaRaB Artificial Neural         |  |  |  |
|                                          | Network Algorithm) algorithm.                                       |  |  |  |
|                                          | Averaged LW Fluxes from instantaneous ScaRaB pixels. Fluxes         |  |  |  |
| TOA LW Flux                              | were computed using SANN-Method-1 (ScaRaB Artificial Neural         |  |  |  |
|                                          | Network Algorithm) algorithm.                                       |  |  |  |
| Quality Index                            | TBD                                                                 |  |  |  |
|                                          | This parameter represents the coverage for each 1 deg per 1 deg     |  |  |  |
| Pov povont opvovogo                      | grid. This percentage value can be 0 (when we don't have any        |  |  |  |
| box_percent_coverage                     | ScaRaB measurements over a grid) and up over 100% (because          |  |  |  |
|                                          | the original ScaRaB pixels overlap).                                |  |  |  |
| Solar_Zenith_Angle                       | Solar zenith angle at pixel center.                                 |  |  |  |
| Viewing_Zenith_Angle                     | Viewing zenith angle at pixel center                                |  |  |  |
|                                          | Each ScaRaB pixels (in their specific geometry) have geotype data.  |  |  |  |
|                                          | These data, derived from the IGBP, have been projected in the       |  |  |  |
|                                          | Level 2 processing. In this level-2B, they have been again          |  |  |  |
|                                          | reprojected on a 1 deg per 1 deg grid. Here all the information has |  |  |  |
|                                          | represented geotype number found in each 1° per 1° pixel            |  |  |  |
|                                          | IGBP Land Cover Legend: 1=Evergreen Needleleaf Forest :             |  |  |  |
| Geotype                                  | 2=Evergreen Broadleaf Forest : 3=Deciduous Needleleaf Forest :      |  |  |  |
|                                          | 4=Deciduous Broadleaf Forest : 5=Mixed Forest : 6=Closed            |  |  |  |
|                                          | Shrublands ; 7=Open Shrublands ; 8=Woody Savannas ;                 |  |  |  |
|                                          | 9=Savannas ; 10=Grasslands ; 11=Permanent Wetlands ;                |  |  |  |
|                                          | 12=Croplands ; 13=Urban and Built-Up ; 14=Cropland/Natural          |  |  |  |
|                                          | Vegetation Mosaic ; 15=Snow and Ice ; 16=Barren or Sparsely         |  |  |  |
|                                          | Vegetated ; 17=Water Bodies ; 18=Tundra ; 19=Fresh Snow ; 20=       |  |  |  |
|                                          | Sea Ice.                                                            |  |  |  |
| Geotype percent coverage                 | For each of the 6 most represented geotype, we have the             |  |  |  |
|                                          | percentage coverage for one 1 deg per 1 deg grid.                   |  |  |  |
| CM/ Company Islandification              | We have 6 different SW scenes identification (i.e. ocean no glint,  |  |  |  |
| SW_Scene_Identification                  | ocean glint, dark desert, bright desert, iow-to-moderate            |  |  |  |
|                                          | For each of the 6 scenes identification, we have the percentage     |  |  |  |
| SW_Scene_Identification_percent_coverage | coverage for one 1 deg per 1 deg grid                               |  |  |  |
|                                          | We have 5 different LW scenes identification (i.e. night ocean no   |  |  |  |
| LW_Scene_Identification                  | glint, ocean glint, land, desert).                                  |  |  |  |
| ····                                     | For each of the 5 scenes identification, we have the percentage     |  |  |  |
| LW_Scene_Identification_percent_coverage | coverage for one 1 deg per 1 deg grid.                              |  |  |  |
| Table 9 : SC                             | ARAB-L2B-FLUX Variables notes                                       |  |  |  |

#### References

Gif, N., O. Chomette, P. Raberanto (2011), Co-location algorithms. Geophysical data projection using pixel point spread function, Megha-Tropiques Technical Memorandum – MTTM n°2.

Megha Tropiques L1 product definition (17/01/2013), 2013\_01\_17\_Level-1productdef\_ED3rev4.pdf

Suttles, J. T., and Coauthors (1988), Angular radiation models for Earth-atmosphere system. Volume 1: Shortwave radiation. NASA Rep. RP 1184, 144 pp.

Suttles, J. T, R. N. Green, G. L. Smith, B. A. Wielicki, I. J. Walker, V. R. Taylor, and L. L. Stowe (1989), Angular radiation models for Earth-atmosphere system. Volume 2: Longwave radiation. NASA Rep. RP 1184-VOL-2, 88 pp.

Viollier, M., and P. Raberanto (2010), Radiometric and Spectral Characteristics of the ScaRaB-3 Instrument on Megha Tropiques: Comparisons with ERBE, CERES, and GERB. *J. Atmos. Oceanic Technol.*, 27, 428–442.

Viollier, M., C. Standfuss, O. Chomette, and A. Quesney (2009), Top-of-Atmosphere Radiance-to-Flux conversion in the SW domain for the ScaRaB-3 instrument on Megha-Tropiques. J. Atmos. Oceanic Technol., 26, 2161-2171.

Wielicki, B. A., and R. N. Green (1989), Cloud identification for ERBE radiative flux retrieval. J. Appl. Meteor., 28, 1133–1146.