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1. Introduction 
 

TAPEER-BRAIN is a combined Microwave-Infrared accumulated precipitation estimation 

product implemented as a Megha-Tropiques Level 4 product. TAPEER stands for Tropical 

Amount of Precipitation with an Estimate of ERrors. It provides precipitation estimations and 

associated errors at the one-degree/one-day accumulated scale. TAPEER-BRAIN is based on 

the BRAIN algorithm (Viltard et al., 2006, MT Level 2 MW-derived instantaneous rain 

estimation product) and the TAPEER algorithm. 

 

 

 

Figure 1 : General diagram 

 

 

The TAPEER algorithm relies on two separate algorithms to provide both the Tropical 

Amount of Precipitation and the Estimate of ERrors. Figure 1 summarizes the functioning of 

the algorithm with black arrows standing for the Tropical Amount of Precipitation 

computations, green arrows and pink arrows standing for the Estimate of ERrors 

computations. 
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2. Algorithms 
 

2.1 Tropical Amount of Precipitation 

 

The Tropical Amount of Precipitation is estimated with a combination of MW-derived rain 

estimations and time series of geostationary Thermal Infrared data (TIR). Figure 2 illustrates 

the need of MW and TIR data combination to estimate rainfall at the accumulated scale: a 

rainy event occurred on the 8th of September 2006 over Niamey and led to one of the most 

important daily rain accumulation (18.5 mm +/-2.1 mm) in the rain gauge records for the 

2006 monsoon season. This rainy event has not been observed by any MW imager of a 

constellation of four low earth-orbiting satellites, but was monitored by the multispectral 

imager SEVIRI onboard the geostationary satellite Meteosat Second Generation (top line). IR 

monitoring provides information only statistically related to rainfall accumulated on long 

periods and averaged over large areas. Thus MW-derived estimations are jointly used with IR 

data to provide an Amount of Precipitation. The method of combination of TIR data and MW-

derived rain rates selected for TAPEER relies on the Universally Adjusted GOES 

Precipitation Index (UAGPI) technique (Xu et al., 1999) which aims to estimate rain 

accumulation through cold cloud fraction calculations. 

 

 

 

 

Figure 2: Time series (first line) of Infrared Brightness temperatures (in Kelvin, grey colorbar) images for 

the 8th of September 2006 over the region of Nia                                                         

            areas close to the rain gauge network of Niamey). Time series (secondline) of Infrared Bright- 

ness temperatures images during the period ±2-days off the 8th of September 2006, selected when the 

BRAIN algorithm, from a constellation of passive MW imagers, provides rain estimations (in mm.h
−1

, 

rainbow colorbar) 
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The UAGPI relates accumulated rainfall, in a given area A over a period T, < R >A;T to the 

rainy cloud fraction Fc in this space-time-volume, working on the assumption that for large 

enough areas and accumulation times, rainfall rates in this volume tend towards a local mean 

value RCOND that may be determined through the use of available local microwave satellite 

precipitation data. For instance, Figure 2 (bottom line) illustrates the available local 

microwave satellite precipitation data for the one-degree area of Niamey on the 8th of 

September 2006, in a volume of 5° x 5° x 5-day surrounding the 1°/1-day volume. With an 

estimate of the rainy cloud fraction Fc and the local mean rain rate value RCOND, the following 

equation is used to compute the Tropical Amount of Precipitation: 

< R >A;T= FC . RCOND . T  (1) 

The rainy cloud fraction Fc, for a period T (24 h) and a given area A (1°x 1°), is estimated 

with TIR data under the following assumption: TIR samples colder (resp. warmer) than a 

given threshold Tthreshold are assumed to be rainy (resp. non-rainy). From the GATE 

experiment in Tropical Atlantic, it was shown that a 235 K threshold was a good compromise 

when estimating monthly and 2.5° x 2.5° rainy cloud fractions (Arkin, 1979). 

Numerous studies have demonstrated that Tthreshold can be adapted to local meteorological 

conditions for a more accurate estimation of the rainy cloud fraction, at scales shorter than a 

month and for areas smaller than 2.5°x 2.5°(Adler et al., 1993; Xu et al., 1999; Huffman et al., 

2001; Todd et al., 2001; Kidd et al., 2003). 

One method to adapt Tthreshold to local meteorological conditions is to work with local 

distributions of MW-derived rain estimations, collocated with TIR data, and perform a 

histogram matching. Figure 3 shows an example of the procedure: local distributions of 

Infrared and Rainfall data are collected in a 5° x 5° x 5-day volume, surrounding a 1°/1-day 

volume in which FC needs to be estimated. These distributions are cumulated to derive 

cumulated distribution functions. Tthreshold is then set so that the fraction of collocated TIR 

data warmer than this threshold is equal to the fraction of non-rainy collocated Rain Rates. In 

the example of Figure 3, 75% of the MW-derived rain samples are non-rainy samples: 

Tthreshold is then set to approximately 240 K. The second parameter RCOND is set to the mean 

rainy value of this distribution for keeping the rain volume estimated in the MW-derived rain 

rate local distribution. 

The cloud top temperature/rainfall relationship is likely to vary over a wide range of scales, 

from inter-annual to sub-daily scales depending on the physical properties of the environment 

of rainy events like the tropical wave dynamics (Machado et al., 1993), the relative humidity 

available in the boundary layer (Roca et al., 2005), soil moisture (Taylor et al., 2010), local 

solar time (Laing et al., 2008). 

This simple histogram matching method converges toward values of Tthreshold and RCOND 

depending on the volume of data used for their computation. This volume of data, called 

training volume in the following, has two characteristics: the size of the geographical domain 

and the duration of the period considered for the training of a 1°/1-day rain estimation. 
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Figure 3: Distributions of Infrared p                       -                                            

                                             -                                                  x 5-days 

volume (Kidd et al., 2003) 

 

 

The two parameters Tthreshold and RCOND are computed for all the 1°x1°x1-day volumes of the 

whole Tropics and for a given period. The local volumes of collocated data are chosen to 

overlap each other with a moving window of 5° x 5° x 5-day to avoid large discontinuities in 

the (Tthreshold, RCOND) fields. For each day of the period, maps of parameters (Tthreshold, RCOND) 

are then created. Figure 4 shows an example of two maps of Tthreshold and RCOND used to 

compute a rain accumulation map. One can see that in the Tropical Atlantic ocean, the two 

parameters are close to 235 K and 3 mm.h
-1

 as found during the GATE experiment, but 

exhibit a large variability over the whole Tropical belt. In particular, large regions like the 

Sahelian band or the Northern part of Bay of Bengal present very cold Tthreshold under 200 K to 

exclude raining from non-raining clouds. This variability demonstrates the geographical 

dependence of the cloud top temperature/rainfall relationship and confirms the need of their 

local computation. 
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Figure 4: Tthreshold (middle) and RCOND (bottom) used to compute a TAPEER 1  /1-day precipitation map 

(top) 

 

 

The size of the geographical domain and the duration of the period of the training volume are 

two parameters of the TAPEER algorithm. They are closely related to a third degree of 

freedom: the configuration of the constellation of Passive MW Observing Systems. In 

Chambon (2011), we show a sensitivity study of these three degrees of freedom on the 

Tropical Amount of Precipitation as well as on the Estimate of ERrors. Depending on the 

number of Passive MW Observing Systems available, the training volume can be selected in 

order to compute 1°/1-day best estimates. 

In order to compute the rainy cloud fraction FC for each 1° x 1° x 1-day volume, time series 

of TIR geostationary images are segmented: TB warmer than the local Tthreshold are set to "0" 

(non rainy) samples and TB colder than the local Tthreshold, are set to "1" (rainy) samples. 

These Rain/No-Rain maps are then aggregated and averaged to compute local FC. < R >A;T is 

then derived using Equation 1. Another technical solution, which was chosen in the present 

implementation of the TAPEER algorithm, is to assign 0 mm.h
-1

 to TB warmer than the local 

Tthreshold, and RCOND mm.h
-1

 to TB colder than the local Tthreshold. The rain rates maps are then 

averaged at the 1° x 1° x 1-day. In this case, the rain rates maps may be seen as instantaneous 

rain samples at the high resolution of geostationary TIR data. These rain samples are 

contaminated by very large random errors due to the very loose physical/statistical 

relationship on which their computation is based. These random errors average out when the 

rain rates maps are aggregated at the accumulated scale. 
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2.2 Estimate of Errors 

 

The error budget of satellite rainfall estimations is composed of a sum of three terms, under 

the assumption that error sources are uncorrelated. These different terms are added to 

compute the Estimate of ERrors in the TAPEER algorithm: 

S
2
 = S

2
Sampling + S

2
Algorithm + S

2
Calibration  (2) 

Both S
2

Algorithm and S
2

Calibration terms are the consequence of the errors on the two data sources 

used in TAPEER: MW-derived rain estimations and TIR brightness temperature data. Errors 

on these two data sources can be large, especially for the MW-derived rain estimations, and 

possibly be magnified in the area-integrated rain accumulations. To account for these error 

sources in the error computed in the TAPEER algorithm, a forward error propagation 

technique was developed (Chambon et al., 2011). This technique leads to an estimation of 

S
2

Algorithm and S
2

Calibration for realistic magnitude of errors on MW derived rainfall estimation 

algorithms and on TIR brightness temperature data. 

The S
2

Sampling term represents the error related to the discrete nature of measurements in space 

and time, used to estimate an area-integrated rain accumulation. An error model involving 

variograms computation is used to estimate this first term (Roca et al., 2010). This model 

consists in the computation of the variance of estimation of a mean, given σ
2
 the variance of 

the samples and NIndependent the number of independent samples composing the mean rainfall 

accumulation: 

SSampling
2 =

s 2

NIndependent
  (3) 

 

For this model, a local estimate of NIndependent is required. To this end, local space and time 

variograms, g(Dx, t0 )  and g(x0,Dt) , are computed to extract NIndependent from the samples 

constituting < R >A;T . These samples are the "0" (non rainy) samples and "1" (rainy) samples 

or the 0 mm.h
-1

 samples and RCOND mm.h
-1

 samples discussed above. In order to avoid the 

contamination of variograms by the large random errors in the rain rate maps, variograms are 

computed over the rain/no-rain fields or Indicator fields (noted IF fields below) (Barancourt et 

al., 1992). 

For a slot t0 of the IF time series, the space variogram g(Dx, t0 ) can be expressed with the 

Equation 4 where Δx is the lag space between two samples, n(Δx) is the number of pairs of 

samples distant of Δx, and s space

2 (t0 ) the variance of the IF field over the area and at the slot t0 

where the space variogram is computed. 

g (Dx= x1 - x0 , t0 ) =

1

n(Dx)
[IF(x1, t)- IF(x0, t)]

2

i=0

n(Dx)

å

s space

2 (t0 )
  (4) 

For a location x0  of the IF fields, the time variogram g(x0,Dt) can be expressed with the 

Equation 5 where Δt is the lag time between two samples, m(Δt) is the number of pairs of 
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samples distant of Δt and s time

2 (x0 )  the variance of the IF fields over the period and the 

location x0  where the time variogram is computed. 

g (x0, t1 - t0 )=

1

m(Dt)
[IF(x0, t1)- IF(x0, t0 )]

2

i=0

m(Dt )

å

s time

2 (x0 )
  (5) 

 

Figure 5 shows a part of the time series of IF fields used to compute Figure 6 of Chambon et 

al. (2011). Over each image of 5° x 5°, a space variogram can be computed: g(Dx, t0 ) for the 

slot t0, g(Dx, t1)  for the slot t1, etc. For each pixel, a time series over a given period can be 

extracted (red lines of Figure 5) ; a time variogram can be computed : g(x0,Dt) for the pixel 

at position x0 , g(x1,Dt) for the pixel at position x1. 

 

 

 

Figure 5:                      -                                            -              -               

two red lines, positioned at x0  and x1 show the time series over which two time variograms g(x0,Dt) 

and g(x1,Dt) can be computed. 

 

 

 

Deriving an estimate of NIndependent in a 1° x 1° x 1-day volume requires the averaging of 

variograms over the volume. Indeed, where a single variogram reflects the autocorrelation of 

only a fraction of the samples composing the mean rainfall accumulation, averaged space and 

time variograms GA,T (Dx) and GA,T (Dt) reflect the ensemble autocorrelation: 
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GA,T (Dx) =
1

Nt0ÎT
g(Dx, t0 )

t0ÎT

å   (6) 

GA,T (Dt) =
1

Mx0ÎA

g(x0,Dt)
x0ÎA

å   (7) 

Figure 3 of Roca et al. (2010) shows GA,T (Dx)  and GA,T (Dt)  for three different satellite 

products and the modeling of them by an exponential function. In the TAPEER algorithm, 

GA,T (Dx) and GA,T (Dt) are also modeled by exponential functions and the derived space and 

time e-folding distances d and τ are used to compute NIndependent using the following equation: 

N independent =
A.T

d 2 .t
  (8) 

In terms of practical considerations, using a domain larger than 1° x 1° x 1-day to average 

variogram functions GA,T (Dx) and GA,T (Dt) leads to more robust variograms. A compromise 

between averaging variograms for robustness and detecting the variability of d and τ 

parameters was found to be an averaging volume of 5° x 5° x 10-days. Variogram 

calculations are time consuming, so the following assumptions are used to limit computation 

cost: 

 A regular space grid is assumed in 5° x 5° domains of geostationary TIR data, 

variations in inter-pixel distance are only taken into account from a 5° x 5° domain to 

another 5° x 5°. 

 The smaller time resolution of geostationary TIR data is 30 minutes. 

 An exponential model is assumed for all variograms. 

 5° x 5° x 10-days domains do not overlap each other, d and τ are considered to be 

constant inside such a volume. 
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